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Abstract

An inverse design problem is solved to determine the shape of complex coolant ¯ow passages in internal cooled

turbine blades by using the conjugate gradient method (CGM). One of the advantages of using CGM lies in that it
can easily handle problems having a huge number of unknown parameters and it converges very fast. The boundary
element method (BEM) is used to calculate the direct, sensitivity and adjoint problems due to its characteristics of
easily-handling the problem considered here.

Results obtained by using the CGM to solve the inverse problems are veri®ed based on the numerical experiments
in the analysis model. One concludes that the CGM is applied successfully in estimating the arbitrary shape of
cavities and the rate of convergence is also very fast even when the number of unknown parameters is large.

Moreover, the design model of the inverse problem is also performed to estimate the optimal shape of cooling
passages in accordance with the desired blade surface temperature distributions. # 1999 Elsevier Science Ltd. All
rights reserved.

1. Introduction

The technique in designing the shapes and locations

of internal cooling ¯ow passages of turbine blades is

very important to turbomachinery industy. Due to its

inherent complexity, the design of these cooling pass-

ages is usually accomplished using various approxi-

mate and empirical techniques.

During the past few years, the pioneers of cooling

passage design problems, Dulikravich and his co-

workers, have successfully developed inverse design al-

gorithms for estimating the proper sizes, shapes and lo-

cations of coolant passages for internally cooled

turbine blades and have published a series of interest-

ing papers.

For instance, Kennon and Dulikravich [1,2] used a

panel method and Davidon±Fletcher±Powell a method

to estimate the shape of internal cooling passages. In

that paper, the desired temperature distributions are

speci®ed on the inner surfaces (i.e. the surface of cool-

ing passages), where the temperatures are de®nitely

lower than the outer surface (i.e. the surface of the tur-

bine blade). From the designer's viewpoint, the critical

regions where high temperature may occur must be on

the outer surface. For this reason the desired tempera-

ture distributions should be speci®ed on the outer sur-

face. The authors of [1,2] also noticed this reality

requirement, and in latter publications the desired

quantities are then speci®ed on the outer surfaces.

Dulikravich and Kosovic [3] used the technique of

size comparison to minimize the number of cooling
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holes. Dulikravich and Martin [4] used superelliptic
functions to de®ne the cooling holes and performed

inverse estimations. In Refs [3,4] the desired quantities
speci®ed on the outer surface are now surface heat

¯uxes. This is somehow unrealistic since information
of temperatures is always much easier to obtain and

specify than the heat ¯uxes on the outer surface.
The boundary conditions used in [1±4] for inner and

outer surfaces are the Dirichlet condition, and over-

speci®ed (i.e. Dirichlet and Neumann) conditions, re-
spectively. However, for the case of turbine blades con-

sidered here, the inner, as well as the outer boundary
conditions, should be Robin condition and overspeci-

®ed (i.e. Dirichlet and Robin) conditions, respectively,
to match the real situations since both inner and outer

surfaces contain a ¯ow of ¯uids.
Moreover, the optimization algorithm used in [1±4]

is classi®ed as the `parameter estimation' [5] in inverse
problems and did not show explicitly in the paper. As

the number of unknown parameters are increased, the

rate of convergence becomes very slow since one has
to perturb the unknown parameters one at a time to

calculate the gradients. This fact can be shown from
Ref. [4] where they reported that for the cases of

coated hollow disk and airfoil, 2790 and 12,028 s of
CPU time is needed, respectively, on an IBM 3090

computer, for only eighteen unknown parameters.
The literature review above indicates that the tech-

niques for [1±4] belong to the parameter estimation [5],
therefore, when the number of unknown parameters

increased tremendously (such as the case when the

number of holes are large), the algorithm may con-
verge very slowly or even may not work. This phenom-

enon has been discussed by Huang and Chao [6] in an
inverse geometry problem. They concluded that the

techniques of function estimation would be much bet-
ter than parameter estimation, since the number of

unknown parameters are unlimited when using the
technique of function estimation.

Based on the above study, the present work is to
develop an inverse design algorithm with the boundary

element method (BEM) to estimate the optimal shapes
of cooling holes by using the following improvements;

(i) the technique of function estimation is used (i.e. the
search direction can be obtained by solving only the

adjoint problem), (ii) Robin boundary conditions on
both inner and outer surfaces are used, and (iii) the

desired temperature distributions are speci®ed on the
outer surface.

The present paper is actually an extension of the

works by Huang and Chao [6] and Huang et al. [7]. In
Ref. [6] the search directions are restricted in the y-

direction, i.e. the unknown parameters are y-coordi-
nates only. In Ref. [7], we do not con®ne the search

directions, i.e. the unknown parameters become x- and
y-coordinates, but only the steepest descent method

(SDM) is discussed.

In this paper, the conjugate gradient method (CGM)
for the numerical solution to inverse design problems

in estimating the optimal locations and shapes of the
internal cooling passages for turbine blades based on

the desired outer surface temperature distribution are
considered.

The use of the boundary element method is
suggested by the basic nature of the inverse problem

(to search an unknown domain, thus an unknown sur-
face), because domain discretization is avoided. More

speci®cally, the advantages gained by a BEM-based al-
gorithm, is the ability to readily accommodate the

changes in the unknown boundary shape as it evolves
from its initial, to its ®nal shape, and the ability to

handle the problem of multiple internal boundaries.

The present work addresses the developments of the
CGM, for estimating unknown shapes of cooling

Nomenclature

B Biot number
G, H geometry dependent matrix
hi convective heat transfer coe�cient

J functional de®ned by Eq. (5)
J ' gradient of functional de®ned by Eq. (14)
K thermal conductivity

L reference length
q heat ¯ux density
T(x, y ) estimated dimensionless temperature

Y(x, y ) desired dimensionless temperature.

Greek symbols
b search step size
g conjugate coe�cient

Gi (x, y ) boundaries of the computational domain
d(.) Dirac delta function
DT(x, y ) sensitivity function de®ned by Eq. (7)

e convergence criteria
l(x, y ) Lagrance multiplier de®ned by Eq. (12)
o random number

O computational domain.

Superscripts
n iteration index

Ã estimated values
� fundamental solution

dimensional quantities.
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passages. The CGM is derived from the perturbation
principle, and transforms the inverse problem to the

solution of three problems, namely, the direct problem,
the sensitivity problem and the adjoint problem. This
method will be discussed in detail in the text.

2. The direct problem

To illustrate the methodology for developing ex-
pressions for use in determining the optimal shapes

and locations of internal cooling passages for turbine
blades in a homogeneous medium with thermal con-
ductivity K, we consider the following two-dimen-
sional, steady-state, inverse design problem. For a

blade with domain O, the boundary conditions along
outer boundary G1, and inner boundary Gi, i = 2±I
(i.e. there are (I ÿ 1) passages inside the turbine blade),

are all subjected to the Robin-type boundary con-
ditions, with convective heat transfer coe�cients hi and
ambient ¯uid temperatures T1i, i= 1±I.

Fig. 1 shows the geometry and the coordinates for
the two-dimensional physical problem considered here.
The mathematical formulation of this steady-state heat

conduction problem in dimensionless form is given by:

@ 2T

@ 2x
� @

2T

@ 2y
� 0 in O �1a�

@T

@n
� B1�T11 ÿ T � along outer boundary G1 �1b�

@T

@n
� Bi�Tÿ T1i � along unknown inner boundary

Gi � Gi�x, y�, i � 2±I

�1c�

where the following dimensionless quantities are
de®ned

T �
�T

�TR

; x � �x

�L
; y � �y

�L
; Bi �

�h i
�L

�K
, i � 1 to I

here Bi, i = 1 to M, represents the Biot number, TR

and L are the reference temperature and length, re-
spectively. The above problem is solved by the follow-

ing BEM algorithm.
For a constant property, steady-state heat conduc-

tion problem with a domain O and boundary G, the

Fig. 1. The system under consideration.
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boundary integral equation for this problem without
generation term can be derived as [8]

cTm �
�
G
Tq� dG �

�
G
qT � �2�

where m= point on G or in O, T = temperature,
q=(@T/@n )=heat ¯ux density, c = 1, if m is in O,
c < 1 if m is on G (c = 0.5 if G is smooth at m ),
T �=stationary fundamental solution, q �=normal de-
rivative of T �.
Thus,

T � � 1

2p
ln

�
1

r

�
in two dimensions

where r = distance from m to a point of G.
Generally speaking, the discretization of G into k

boundary elements allows substitution into the bound-

ary integral Eq. (2) expressed for each boundary el-
ement of the algebraic linear system [8]

CT�HT � Gq �3�
where T=vector of temperature boundary elements,
q=vector of boundary heat ¯ux densities, H,
G=geometry dependent matrices, C=diagonal matrix.

Once all unknowns are passed to the left-hand-side
and the knowns are gathered on the right-hand-side,
one can write

AX � B �4�
where X is the vector of unknown Ts and qs on the
boundary. B is found by multiplying the corresponding

columns by the known values of Ts or qs.
The computer program for the above problem is

modi®ed, based on the textbook by Brebbia and

Dominguez [8], and linear boundary elements are
adopted for all the examples illustrated here.
The direct problem considered here is concerned

with the determination of the medium temperature
when the locations and shapes of inner cooling
passages Gi (x, y ), i = 2±I, and the conditions at all
boundaries are known.

3. The inverse design problem

For the inverse problem, the locations and shapes of
inner cooling passages Gi (x, y ), i= 2±I, are regarded
as being unknown, but everything else in Eq. (1) is

known. In addition, desired temperature distributions
on the outer blade surface G1 are considered available.
This implies that the dual boundary conditions (i.e.

Dirichlet and Robin) are speci®ed on the surface G1.
Referring to Fig. 1, we assumed that the number of

locations for the speci®ed desired temperatures on G1

is M (marked by the symbol ` � ' in Fig. 1). The pur-
pose of the present study is to use those M tempera-

ture data points to estimate the optimal locations and
shapes of inner cooling passages Gi (x, y ), i = 2±I in
the inverse design calculations.

Let the desired temperature distributions taken on
G1 be denoted by Y(xm, ym)0Ym, m= 1±M, where M
represents the number of desired temperatures. Then

the inverse problem can be stated as follows: by utiliz-
ing the above mentioned desired temperature data Ym,
estimate the unknown locations and shapes of the in-

ternal cooling passages Gi (x, y ), i= 2±I.
The solution of the present inverse design problem is

obtained in such a way that the following functional is
minimized:

J�Ĝi�x, y�� �
XM
m�1
�Tm ÿ Ym�2 �5�

where Tm are the estimated or computed desired tem-
peratures on the outer blade surface G1. These quan-
tities are determined from the solution of the direct

problem given previously by using an estimated
Ĝi�x, y� for the exact Gi (x, y ). Here the hat ` Ã ' denotes
the estimated quantities.

4. Conjugate gradient method CGM for minimization

The SDM [7] is similar to, but simpler than the
CGM [9] since the calculations of the conjugate coef-

®cient and direction of descent are not needed.
However, the drawback for SDM is that the rate of
convergence is slower than the CGM.

The following iterative process based on the CGM is
now used for the estimation of the unknown boundary
shapes Gi (x, y ) by minimizing the functional
J�Ĝi�x, y��.

Ĝ
n�1
i �x, y� � Ĝ

n

i �x, y� ÿ bnPn
i �x, y� for i � 2±I

and n � 0, 1, 2, . . .
�6a�

or more explicitly

x̂n�1 � x̂n ÿ bnPn
i �x, y� � cos f �6b�

ŷn�1 � ŷn ÿ bnPn
i �x, y� � sin f �6c�

and

Ĝ
n�1
i �x, y� � Ĝi�x̂n�1, ŷn�1�, i � 2±I �6d�

where f is the angle between horizontal and normal
outward direction of the unknown boundary as shown
in Fig. 2. The value of f can be calculated for any
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given con®gurations. b n is the search step size in going

from iteration n to iteration n + 1 and Pn
i (x, y ) is the

direction of descent (i.e. search direction) given by

Pn
i �x, y� � J

0n
i �x, y� � gnPnÿ1

i �x, y�, i � 2±I �6e�

which is a conjugation of the gradient in the outward
normal direction J 'n

i (x, y ) at iteration n and the direc-
tion of descent Pn ÿ 1

i (x, y ) at iteration n ÿ 1. The
conjugate coe�cient is de®ned as [9]

gni �

�
Gi

�J 0n
i �2 dGi�

Gi

�J 0nÿ1
i �2 dGi

with g0i � 0, i � 2±I �6f�

We note that when g ni=0 for any n, in Eq. (6f), the
direction of descent Pn(x, y ) becomes the gradient
direction, i.e. the SDM is obtained. The convergence

of the above iterative procedure in minimizing the
functional J is guaranteed in [10].
To perform the iterations according to Eq. (6a), we

need to compute the step size b n and the gradient of

the functional J 'n
i (x, y ). In order to develop ex-

pressions for the determination of these two quantities,
a `sensitivity problem' and an `adjoint problem' are

constructed as described below.

5. Sensitivity problem and search step size

The sensitivity problem is obtained from the original
direct problem de®ned by Eq. (1) in the following

manner: it is assumed that when Gi (x, y ), i= 2±I,
undergoes a variation DGi(x, y ), T(x, y ) is perturbed
by DT. Then replacing in the direct problem Gi (x, y )

by Gi (x, y )+DGi (x, y ) and T by T+DT, subtracting
from the resulting expressions the direct problem and
neglecting the second-order terms, the following sensi-

tivity problem for the sensitivity function DT are
obtained.

@ 2DT
@x 2

� @
2DT
@y2

� 0 in O �7a�

@DT
@n
� ÿB1DT along outer boundary G1 �7b�

@DT
@n
� BiDGi

@T

@n
along unknown inner boundary

Gi � Gi�x, y�, i � 2±I

�7c�

where @T/@n represents the temperature gradient along
the normal direction of Gi. The BEM technique is used

to solve this sensitivity problem.
The functional J�Ĝn�1

i � for iteration n + 1 is
obtained by rewriting Eq. (5) as

J�Ĝn�1
i � �

XM
m�1

h
Tm�Ĝn

i ÿ bnPn
i � ÿ Ym

i2
�8a�

where we replaced Ĝ
n�1
i by the expression given by Eq.

(6a). If temperature Tm�Ĝn

i ÿ bnPn
i � is linearized by a

Taylor expansion, Eq. (8a) takes the form

J�Ĝn�1
i � �

XM
m�1

h
Tm�Ĝn

i � ÿ bnDTm�Pn
i � ÿ Ym

i2
�8b�

where Tm�Ĝn

i � is the solution of the direct problem on

Gi by using estimate Ĝ
n

i (x, y ) for exact Gi (x, y ). The
sensitivity functions DTm (Pn

i ) are taken as the sol-
utions of problem (7) on Gi (x, y ) by letting DGi=Pn

i .

The search step size b n is determined by minimizing
the functional given by Eq. (8b) with respect to b n.
The following expression results:

bn �

XM
m�1
�Tm ÿ Ym�DTm

XM
m�1
�DTm�2

�9�

6. Adjoint problem and gradient equations

To obtain the adjoint problem, Eq. (1a) is multiplied
by the Lagrange multiplier (or adjoint function) l(x,
y ) and the resulting expression is integrated over the

corresponding space domain. Then the result is added
to the right-hand-side of Eq. (5) to yield the following
expression for the functional J�Ĝn

i (x, y )]:

Fig. 2. The graphical analysis of CGM from n to (n+ 1) iter-

ations.
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J�Ĝi�x, y�� �
XM
m�1
�Tm ÿ Ym�2

�
�
O
l

 
@ 2T

@x 2
� @

2T

@y2

!
dO �10�

The variation DJ is obtained be perturbing Gi by DGi

and T by DT in Eq. (1), subtracting from the resulting
expression the original Eq. (1) and neglecting the sec-

ond-order terms. We thus ®nd

DJ �
�
G1

2�Tÿ Y �DTd�xÿ xm�d� yÿ ym� dG1

�
�
O
l

"
@ 2DT
@x 2

� @
2DT
@y2

#
dO �11�

where d(�) is the Dirac delta function and (xm, ym),

m= 1 to M, refer to the surface points on G1 where
the desired temperatures are speci®ed. In Eq. (11), the
domain integral term is reformulated based on Green's
second identity; the boundary conditions of the sensi-

tivity problem given by Eqs. (7b) and (7c) are utilized
and then DJ is allowed to go to zero. The vanishing of
the integrands containing DT leads to the following

adjoint problem for the determination of l(x, y ):

@ 2l
@x 2
� @

2l
@y2
� 0 in O �12a�

@l
@n
� B1l � 2�Tÿ Y � d�Xÿ Xm�d� yÿ ym�

along outer boundary G1

�12b�

@l
@n
� 0 along unknown inner boundary

Gi � Gi�x, y�, i � 2±I

�12c�

The standard techniques of BEM can be used to solve
the above adjoint problem. Finally, the following inte-

gral term is left

DJ �
�
Gi

�
Bil

@T

@n

�
DGi�x, y� dGi �13a�

From de®nition [9], the functional increment can be
presented as

DJ �
�
Gi

J 0 i�x, y�DGi�x, y� dGi �13b�

A comparison of Eqs. (13a) and (13b) leads to the fol-
lowing expression for the gradient J 'i (x, y ) of the func-
tional J�Ĝi(x, y )]:

J 0 i�x, y� � Bil
@T

@n

����
Gi

, i � 2±I �14�

The calculation of gradient equations is the most im-
portant part of CGM since it plays a signi®cant role of

the inverse calculation.

7. Computational procedure

The computational procedure for the solution of this

inverse problem using the conjugate gradient method
may be summarized as follows:
Suppose Ĝ

n

i (x, y ) is available at iteration n.

1. Solve the direct problem given by Eq. (1) for T(x,
y ).

2. Examine the stopping criterion with a speci®ed e.
Continue if not satis®ed.

3. Solve the adjoint problem given by Eq. (12) for l(x,
y ).

4. Compute the gradient of the functional J 'n
i from

Eq. (14).
5. Compute the conjugate e�cient g ni and direction of

descent Pn
i from Eqs. (6f) and (6e), respectively.

6. Set DGi (x, y )=Pn
i (x, y ), and solve the sensitivity

problem given by Eq. (7) for DT(x, y ).
7. Compute the search step size b n from Eq. (9).

8. Compute the new estimation for Ĝ
n�1
i (x, y ) from

Eq. (6 d) and functional J from Eq. (5). If the value
of the objective function J is less than the speci®ed

stopping criteria e, stop the iterations, otherwise,
return to Step 1.

8. Results and discussions

The objective of this article is to show the validity of
the present approaches in estimating Gi (x, y ), i= 2±I,

where (I ÿ 1) is the number of cooling passages, with
no prior information on the functional form of the
unknown cavities, which is the so-called function esti-

mation. To illustrate the ability of the present inverse
algorithm in estimating the optimal shape and location
of the cooling passages for turbine blade from the
knowledge of the speci®ed desired temperatures, we

consider following two speci®c models, i.e. the analysis
model and the design model.
In the analysis model, the exact shapes of the cool-

ing passages are given, then the temperatures on the
outer surface can be calculated and speci®ed as the
desired temperatures. By using these desired tempera-

tures and arbitrary initial guesses of the holes, one is
asked to reconstruct the exact shapes of cooling
passages by the conjugate gradient method in the inverse
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design problem. Under this consideration the objective

function may decrease to a very small number since
there exists an exact solution.
In the design model, two design problems are con-

sidered (i) the desired temperatures on the blade sur-
face are modi®ed from the existing blade surface
temperatures, (ii) the desired temperatures on the blade

surface are the same as the exiting blades surface tem-
peratures but the Biot number of the cooling passages
are changed. The objective now is to estimate the
shapes and locations of the cooling holes to minimize

the objective function. Under this situation the objec-
tive function may not decrease to a small number since
no exact solution exists, however, the optimal solution

can still be obtained.
We now present below, two models in determining

Gi (x, y ) by the inverse analysis.

8.1. Analysis model

The objective of the analysis model is to show the
validity of the present inverse design algorithm in esti-

mating the shape of cooling holes. For this reason the

following numerical simulation is performed.

The exact con®guration of the turbine blade with

three internal cooling passages (i.e. I= 4) is shown in

Fig. 3. The ambient ¯uid temperature and Biot number

for the blade surface on G1 are taken as 1000 and 2.0,

respectively. The ambient ¯uid temperatures and Biot

number for cooling holes on G2, G3 and G4 are

assumed the same and taken as 10 and 0.1, respect-

ively. The reference temperature, TR, and reference

length, L, are both taken as unity for convenience. The

number of linear elements used for G1, G2, G3 and G4

are 50, 20, 20 and 20, respectively, which implies that

the unknown parameters of x- and y-coordinates are

120 in the present case. The number of unknown par-

ameters is now larger than was calculated in Ref. [4].

The inverse analysis is then performed based on 50

desired temperature data on G1 (referring to Fig. 3

where the symbol ` � ' denotes the location for the

desired temperatures) i.e. Y(xm, ym)0Ym, m = 1 to

50. Those desired temperatures Ym are obtained by

using the given boundary conditions and the exact

shape of cooling passages (as shown in Fig. 3). Once

Fig. 3. The exact and estimated cooling passages in the analysis model.

C.-H. Huang, T.-Y. Hsiung / Int. J. Heat Mass Transfer 42 (1999) 4307±4319 4313



the desired temperatures Ym are obtained, our objec-

tive is to reconstruct the exact shape of cooling pas-
sages by using those Ym and any arbitrary initial
guesses for the cooling holes (referring to Fig. 3 where

the symbol `w' denotes the initial guess for the shape
of the cooling passages). Here, the initial guesses for
the cooling holes are chosen as close to the blade sur-

face as possible.
At the ®rst iteration, the value of the objective func-

tional is calculated as J = 1277 and the average absol-
ute error for the estimated temperature is calculated as

ERR=4.6. After only nine iterations, the value of the
objective functional is decreased to J = 8 and
ERR=0.2.

Here the de®nition for the average absolute error
(ERR) is given as

ERR �
"XM

m�1
j Tm ÿ Ym j

#
� �M � �15�

where M represents the total number of desired tem-

perature data, while Tm and Ym denote the estimated

and desired values of blade surface temperatures.

The estimated shape and location for the cooling
passages is shown in Fig. 3 with symbol `*' and they

are indeed, in good agreement with the exact shapes

except for a few points at the center of the blade. The

reason for this is because the distance from the center

points to the blade surface is large and therefore, the
change of shape at the center region can hardly e�ect

the temperature on the blade's outer surface. A similar

phenomenon has been observed by [11] where they

called this a `corner e�ect'.

The computer time needed for the above calculation

on a 586±266 MHz (Pentium II-266 CPU) PC, is

about 12 s. This implied that the present algorithm

only needs a very short computer time to perform the

inverse calculations in estimating 120 unknown par-
ameters simultaneously.

The above numerical experiment shows the validity

of CGM in inverse calculation. Next our task is to test
the ability of the present algorithm in performing the

design process.

Fig. 4. The estimated cooling passages for lower desired surface temperature along abc curve in the design model.
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8.2. Design model

The existing turbine blade with internal cooling
holes is taken as the exact shape shown in Fig. 3 as

were used in the analysis model. In the design model,
the following two design problems will be discussed.

8.2.1. Problem 1

In Problem 1, the shape of the cooling passages for
the existing blade is the same as the exact passages in
the analysis model. The working conditions for

Problem 1 are taken as T11=1000,
T12=T13=T14=10 and B1=2.0, B2=B3=B4=0.5.
The desired temperatures on the blade surface are
modi®ed from the existing blade surface temperatures,

then by using those desired temperatures one is asked
to estimate the optimal shape of the cooling passages
that minimized the objective function. Under this con-

sideration, no exact shape of cooling holes exists, but
the best shapes can be obtained.
Three test cases will be demonstrated in Problem 1,

they are (a) lower surface temperatures are required,
(b) higher surface temperatures are required and (c)
half of the surface required higher surface temperatures

while the other half required lower surface tempera-

tures.

In the ®rst test case the temperatures on the portion

of blade surface G1 along abc curve (marked by the

symbol ` � ' in Fig. 4) are required to be decreased by

10 from the existing surface temperatures while the

rest of the surface temperatures are kept the same. The

objective function is set accordingly and the program

for the inverse design analysis is performed. Initially

the value of objective function J = 1600 and

ERR=10. After seventeen iterations (CPU time is

about 30 s) we have J = 588 and ERR=5.7. The esti-

mated optimal pro®le for the internal passages is

shown in Fig. 4 with symbol `*'.

From Fig. 4 we learned that the cooling holes are

enlarged near the boundaries abc where the tempera-

tures are required to be decreased while kept almost

the same for the rest of the holes. This implies that we

need to move the cooling passages closer to the bound-

ary abc to lower the surface temperatures along abc,

and this is a reasonable implication. The objective

function J cannot decrease to a small number as in the

analysis model, this is because in a realistic situation

Fig. 5. The estimated cooling passages for higher desired surface temperature along cde curve in the design model.
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we cannot ®nd the cooling passages that exactly match

the desired temperature distributions.

In the second test case the temperatures on the

portion of the blade surface G1 along cde curve

(marked by the symbol ` � ' in Fig. 5) are required to

be increased by eight from the existing surface tem-

peratures while the rest of the surface temperatures are

kept the same. Initially the value of objective function

J= 704 and ERR=8. After four iterations (CPU time

is about 9 s) we have J = 360 and ERR=5.8. The esti-

mated optimal pro®le for the internal passages is

shown in Fig. 5 with symbol `*'.

It can be seen from Fig. 5 that the cooling holes are

shrunk near the boundaries cde where the temperatures

are required to be increased while kept almost the

same for the rest of the holes. This means we need to

move the cooling passages far away from the boundary

cde to increase the surface temperatures along cde.

In the third test case the temperatures along bdf

curve (marked by the symbol ` � ' in Fig. 6) are

required to be increased by eight and the temperatures

along fab curve (marked by the symbol `D' in Fig. 6)

are required to be decreased by 10 from the existing

surface temperatures. Initially the value of objective
function J = 4028 and ERR=8.92. After 10 iterations

(CPU time is about 20 s) we have J = 1863 and
ERR=5.4. The estimated optimal pro®le for the in-
ternal passages is shown in Fig. 6 with symbol `*'.
It is obvious from Fig. 6 that the cooling holes are

now shrunk around the boundaries bdf where the tem-
peratures are required to increase, while they are
enlarged around the boundaries fab where the tem-

peratures are required to decrease.

8.2.2. Problem 2
In Problem 2, if the Biot number for the internal

¯uid is subjected to be changed, i.e. di�erent from the

existing working condition, but the existing surface
temperature distribution is asked to be kept, i.e. the
desired temperatures on the blade surface are the same

as the existing blade surface temperatures. The location
of desired temperatures is marked by the symbol ` � '
in Figs. 7 and 8. Under this consideration one is asked

to estimate the optimal shape of the cooling passages
that minimized the objective function.
Two test cases will be discussed in Problem 2, they

Fig. 6. The estimated cooling passages for higher desired temperature along bdf and lower desired temperature along fab in the de-

sign model.
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are (a) the Biot numbers for the inner holes are
increased and (b) the Biot numbers for the inner holes

are decreased.

In the ®rst case the existing working conditions are
taken as T11=1000, T12=T13=T14=10, B1=2.0,

B2=B3=B4=0.1. Now we are requested that the Biot
number of the internal cooling passages are changed to

B2=1.5, B3=2 and B4=0.1. The inverse design pro-
gram is then performed. Initially the value of objective

function J = 584 and ERR=2.3. After 20 iterations
(CPU time is about 30 s) we have J = 130 and

ERR=1.1. The estimated optimal pro®le for the in-
ternal passages is shown in Fig. 7 with symbol `*'.

It can be seen from Fig. 7 that the cooling holes are

shrunk for the ®rst and second passages and kept
almost the same for the third passage. This is because

when the Biot number is increased the temperature of
the inner surface should be decreased. In order to keep

the same temperature distribution on the blade surface,
the cooling passages must be shrunk.

In the second case, the existing working conditions

are taken as T11=1000, T12=T13=T14=10,
B1=2.0, B2=B3=B4=1. Now the Biot number of the

internal cooling passages are asked to change to

B2=0.3, B3=1 and B4=0.2. The inverse design pro-

gram is then performed again. Initially the value of

objective function j= 127 and ERR=1.1. After 20

iterations (CPU time is about 30 s) we have J= 1.3

and ERR=0.01. The estimated optimal pro®le for the

internal passages is shown in Fig. 8 with symbol `*'.

It is clear from Fig. 8 that the cooling holes are

enlarged for the ®rst and third passages and kept

almost the same for the second passage. This is

because when the Biot number is decreased, the tem-

perature of the inner surface should be increased. In

order to keep the same temperature distribution on the

blade surface, the cooling passages must be enlarged.

Finally the information for all the above results are

summarized in Table 1.

From the above discussions we conclude that the ad-

vantages of using the conjugate gradient method are,

that (i) it does not require a very accurate initial guess

of the unknown shapes, and (ii) the rate of conver-

gence is very fast since it belongs to the technique of

functions estimations.

Fig. 7. The estimated cooling passages for higher Biot number on G2 and G3 holes in the design model.
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9. Conclusions

The CGM together with the BEM were successfully

applied for the solution of the inverse design problem

to estimate the optimal shape of the internal cooling

passages in turbine blades. Several test cases involving

di�erent design considerations were examined.

The results shown that the use of CGM in estimat-

ing the unknown shape of the cooling holes has the

following advantages. (i) It does not require an accu-

rate initial guess of the unknown quantities (as was

shown in the analysis model), (ii) it does not need any

assumptions for the functional form of the cooling

shape, such as assumed in [4], and (iii) it needs very
short CPU time on the Pentium II-266 MHz PC to
complete the calculations.
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Fig. 8. The estimated cooling passages for lower Biot number of G2 and G4 holes in the design model.

Table 1

The information for all the numerical experiments

Initial value of J Initial value of ERR Final value of J Final value of ERR Number of iteration CPU time, s

Fig. 3 1277 4.6 8 0.2 9 12

Fig. 4 1600 10 588 5.7 17 30

Fig. 5 704 8 360 5.8 4 9

Fig. 6 4028 8.92 1863 5.4 10 20

Fig. 7 584 2.3 130 1.1 20 30

Fig. 8 127 1.1 1.3 0.01 20 30

C.-H. Huang, T.-Y. Hsiung / Int. J. Heat Mass Transfer 42 (1999) 4307±43194318



References

[1] S.R. Kennon, G.S. Dulikravich, Inverse design of multi-

holed internally cooled turbine blades, International

Journal for Numerical Methods in Engineering 22

(1986) 363±375.

[2] S.R. Kennon, G.S. Dulikravich, Inverse design of cool-

ant ¯ow passage shapes with partially ®xed internal ge-

ometries, International Journal of Turbo and Jet

Engines 3 (1986) 13±20.

[3] G.S. Dulikravich, B. Kosovic, Minimization of the num-

ber of cooling holes in internally cooled turbine blades,

International Journal of Turbo and Jet Engines 9 (1992)

277±283.

[4] G.S. Dulikravich, T.J. Martin, Inverse design of super-

elliptic cooling passages in coated turbine blade airfoil,

Journal of Thermophysics and Heat Transfer 8 (1994)

288±294.

[5] J.V. Beck, B. Blackwell, C.R. St. Clairi, Inverse Heat

Conduction. Ill-Posed Problem, Wiley, New York, 1985.

[6] C.H. Huang, B.H. Chao, An inverse geometry problem

in identifying irregular boundary con®gurations, Int. J.

Heat Mass Transfer 40 (1997) 2045±2053.

[7] C.H. Huang, C.C. Chiang, H.M. Chen, A shape identi®-

cation problem in estimating the geometry of multiple

cavities, Journal of Thermophysics and Heat Transfer

12 (1998) 270±277.

[8] C.A. Brebbia, J. Dominguez, Boundary Elements, An

Introductory Course, McGraw-Hill, New York, 1989.

[9] O.M. Alifanov, Solution of an inverse problem of heat

conduction by iteration methods, J. of Engineering

Physics 26 (1974) 471±476.

[10] L.S. Lasdon, S.K. Mitter, A.D. Warren, The conjugate

gradient method for optimal control problem, IEEE

Transactions on Automatic Control AC-12 (1967) 132±

138.

[11] R. Pasquetti, D. Petit, Inverse-heat-conduction problems

with boundary elements: analysis of a corner e�ect,

Engineering Analysis with Boundary Elements 13 (1994)

321±331.

C.-H. Huang, T.-Y. Hsiung / Int. J. Heat Mass Transfer 42 (1999) 4307±4319 4319


